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Declining Prevalence of Disease 
Vectors Under Climate Change
Luis E. Escobar1,2,3, Daniel Romero-Alvarez4, Renato Leon5, Manuel A. Lepe-Lopez3, 
Meggan E. Craft2, Mercy J. Borbor-Cordova6 & Jens-Christian Svenning7

More than half of the world population is at risk of vector-borne diseases including dengue fever, 
chikungunya, zika, yellow fever, leishmaniasis, chagas disease, and malaria, with highest incidences 
in tropical regions. In Ecuador, vector-borne diseases are present from coastal and Amazonian regions 
to the Andes Mountains; however, a detailed characterization of the distribution of their vectors has 
never been carried out. We estimate the distribution of 14 vectors of the above vector-borne diseases 
under present-day and future climates. Our results consistently suggest that climate warming is likely 
threatening some vector species with extinction, locally or completely. These results suggest that 
climate change could reduce the burden of specific vector species. Other vector species are likely to 
shift and constrain their geographic range to the highlands in Ecuador potentially affecting novel areas 
and populations. These forecasts show the need for development of early prevention strategies for 
vector species currently absent in areas projected as suitable under future climate conditions. Informed 
interventions could reduce the risk of human exposure to vector species with distributional shifts, in 
response to current and future climate changes. Based on the mixed effects of future climate on human 
exposure to disease vectors, we argue that research on vector-borne diseases should be cross-scale and 
include climatic, demographic, and landscape factors, as well as forces facilitating disease transmission 
at fine scales.

More than half of the world’s population is at risk of vector-borne diseases1, causing public health concerns due to 
elevated mortality and high levels of disability-adjusted life-years (DALYs)2. Vector-borne diseases are currently 
a major problem in tropical developing countries1. Climate variability influences vector population dynamics, 
distribution, and vector-borne disease transmission3. Dengue transmission is associated in space and time with 
local climate effects on survival of its vector Aedes aegypti—more rain and higher temperature generates more 
transmission4,5. Changes in inter-annual climate variability such as the El Niño Southern Oscillation have been 
shown to be important drivers for malaria transmission6. Further, vectors also show distributional shifts from low 
to high altitudes during warm years7.

It has been estimated that by 2100 the average global temperature will have risen between 1.0 and 3.5 °C, 
radically increasing the burden of vector-borne diseases8. As an example, simulations of sandfly vector ecology 
suggest that leishmaniasis will also shift its potential distribution in response to climate change9. Thus, analyzing 
vector distribution patterns is crucial for providing insights to estimate their present-day distribution in detail 
and to anticipate their distribution in face of future climate scenarios.

Vectors species’ potential distribution can be explored via ecological niche modeling10,11. Ecological niche 
models aim to characterize the environmental conditions required by a species to maintain populations in the 
long term without need of immigration. Defining these conditions allows us to identify the potential distribu-
tion of the species12. Models calibrated using available present-day data can also be projected into future climate 
scenarios12.
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Ecuador has a considerable burden of vector-borne diseases across a variety of climatic conditions, human 
population density, and biodiversity across the country (Supplementary Material). Here, we used ecological niche 
modeling to determine the present-day and future potential distribution of multiple important disease vector 
species in Ecuador (Table 1). Niche models were estimated using a coarse-grained macroecological approach 
focused on the broader-scale climate relations of the vectors (e.g., maximum temperature, annual precipitation)13. 
We searched for environmental overlap between niche models of vectors and environments present in Ecuador 
(Fig. 1 Risk A and B). Niche models were then transferred to future climates to identify future suitable areas for 
vector presence (Fig. 1 Risk A and C). The geographic areas suitable for the vectors in Ecuador are considered 
here to be of potential risk for human exposure to the vectors (Fig. 1).

Results
Vectors species distribution forecasts.  Our ecological niche models were able to accurately characterize 
environmental conditions for each vector (Supplementary Fig. S1). The results show that present-day predictions 
based on remote sensing data reveal areas of high risk for exposure to arboviruses vectors across the coastal region 
of western Ecuador and in the Amazonian lowlands in the northeast. Additional areas of exposure risk to vec-
tors were found across valleys of the western region of the Andes mountains (Fig. 2), matching dengue endemic 
areas of Ecuador and reports of the recent chikungunya epidemic14. The highlands exhibited reduced suitability 
to arbovirus vectors under present-day environmental conditions (Fig. 2). Climate-based predictions suggest an 
increased risk in southern areas in the short term (i.e., 2030). Mid-term predictions suggest that by 2050 high risk 
will be distributed in the coast, southern lowlands and in northeastern areas neighboring Colombia and Peru, 
with reduced suitability in central areas across the Andes. Models for 2100 for the arbovirus vectors Ae. aegypti 
and Ae. albopictus, showed an evident geographic shift in the suitable areas, with increased risk for exposure in 
the Andes valleys. Ae. aegypti should experience a reduction in its potential area of distribution by 69%, 43%, and 
48% and population at risk by 84%, 47%, 40% by 2030, 2050, and 2100, respectively. For Ae. albopictus, the poten-
tial area of distribution should be reduced by 45%, 35%, and 53% and the number of people potentially exposed 
by 58%, 46%, and 52% in 2030, 2050, and 2100, respectively (Figs 3 and 4).

Under present-day climate conditions, malaria vectors showed two foci of risk for vectors exposure in west 
central and northeastern Ecuador. However, under future climates these vectors may find wide suitable areas in 
western Ecuador across the coast with an impressive shift to the highlands by 2100, resulting in a rise in exposure 
risk across the Andes Mountains (Fig. 2). The potential area for distribution for An. albimanus is forecasted to be 
reduced by 43%, 46%, and 55% and the estimated people exposed to be reduced by 93%, 92%, and 58% in 2030, 
2050, and 2100, respectively (Figs 3 and 4).

Leishmaniasis vectors showed a broad distribution across all the biomes of Ecuador, with higher risk in the 
lowlands. Models predicted a rise in leishmaniasis exposure risk in the Andes Mountains by 2030 and 2050 
(Fig. 2). Surprisingly, by 2100, we found that future climate will provide suitability for leishmaniasis vectors across 
the Andes, but we were unable to assess future suitability in lowland ecosystems given the non-analogue high 
temperatures anticipated in such areas (Supplementary Fig. S2).

Vectors of chagas disease commonly occupied highland biomes (e.g., T. carrioni and T. dispar); thus, under 
future climate models we forecast extirpation of endemic vector species across Ecuador (e.g., T. dispar; Fig. 3 

Disease

Pathogen Vector

Agent Genus Common name Order Vector species

Chagas disease Protozoa Trypanosoma Kissing bug Hemiptera

Rhodnius ecuadoriensis

Triatoma carrioni

T. dimidiata

T. dispar

Chikungunya Virus Alphavirus
Yellow fever mosquito

Diptera
Aedes aegypti

Asian tiger mosquito Ae. albopictus*

Dengue Fever Virus Flavivirus
Yellow fever mosquito

Diptera
Aedes aegypti

Asian tiger mosquito Ae. albopictus

Malaria Protozoa Plasmodium

Anopheles mosquito

Diptera

Anopheles albimanus

American malaria mosquito An. darlingi

Mosquito An. neivai

Mosquito An. pseudopunctipennis

Mosquito An. punctimacula

Leishmaniasis Protozoa Leishmania Phlebotomine sandfly Diptera

Lutzomyia gomezi

Lu. hartmanni

Lu. trapidoi

Yellow Fever Virus Flavivirus
Yellow fever mosquito

Diptera
Ae. aegypti

Asian tiger mosquito Ae. albopictus

Zika Virus Flavivirus Yellow fever mosquito Diptera Ae. aegypti

Table 1.   List of vector species by disease included in this study. *Not reported officially in Ecuador and not 
active surveillance for its monitoring, but present in neighboring countries.
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and Supplementary Fig. S1) in face of temperatures rising above those experienced across species current range 
(Supplementary Fig. S2). Triatoma dimidiata is forecasted to increase its potential distribution by 189% in 2030, 
172% in 2050, and ~17% in 2100 (Fig. 3).

Vector exposure under climate change.  The general pattern revealed that human populations in the 
Andean highlands would be increasingly exposed to disease vectors as the future climate changes unfold due 
to likely upward vector species range shifts (Fig. 2 and Supplementary Fig. S3). While models in the Northern 
Hemisphere show a displacement of species from south to north and models in the Southern Hemisphere show 
displacements from north to south9,15, we found that the equatorial latitudes of Ecuador show just a slight north-
ward range shift, with strong upward altitudinal displacements into the Andes Mountains. Importantly, across all 
14 vector species we found consistent non-artefactual reductions in potential range area and people potentially 
exposed for nine vector species by 2030, 2050, or 2100, with the malaria vectors Anopheles darlingi and An. neivai 
as the main exceptions (Figs 3 and 4; and Supplementary Fig. S1). The synchrony between reduction of areas 
and populations at risk among the numerous vectors explored, revealed a pattern of potential adverse ecological 
effects of climate change on vector distributions (Fig. 3). Indeed, three species showed reduction of both area and 
people potentially exposed under all three future climate time steps (Ae. aegypti, Ae. albopictus, An. albimanus; 
Figs 3 and 4; and Supplementary Fig. S1). Lack of future suitable environments was found for two vector species, 
suggesting potential for extinction (i.e., T. dispar, and An. pseudopunctipennis, Supplementary Fig. S2).

Discussion
Controlling calibration area, novel climates, model complexity, and model transference to ensure robust predic-
tions, we developed forecasts of geographic shifts in the potential range under future climates for 14 important 
disease vectors in Ecuador, finding consistent predictions of reductions in the vector’s potential ranges and the 
number of people exposed for most of the species studied. Our modeling experiments were developed based on 
a detailed design supported by ecological theories while outputs were evaluated carefully12. The overall patterns 
suggest that vectors of arboviruses and leishmaniasis will experience geographic range reductions by 2100 under 
future climate conditions, while chagas vectors had mixed results with some species increasing (T. dimidata) 
and others reducing (T. carrioni, T. dispar, R. ecuadoriensis) their geographic distribution (Fig. 3). A similar 
situation was observed for malaria vectors where one species (i.e., An. darlingi) was predicted to increase in the 
geographic range while the other species were forecasted to experience range reductions. Therefore, An. darlingi 
and T. dimidata are of particular public health concern as such vectors could expand their range under future 
climate conditions, which could impact the epidemiology of malaria and chagas disease in Ecuador respectively. 
Climate change was even forecasted to possibly extirpate important vectors such as Triatoma dispar, a vector of 
chagas disease. A reliable extinction would require ecological niche conservatism with no adaptation of vectors to 
warming climates; adaptation of species to warming climate is, however, restrained by high temperatures16,17. In 

Figure 1.  Ecological modeling approach used to assess disease vector species’ potential distributions. 
The ecological niche of each vector species was estimated (red ellipsoid) based on present-day environmental 
conditions (E). The environments available in Ecuador were determined under present-day (yellow square) 
and future (orange square) climate conditions. Areas with climatic conditions in Ecuador overlapping between 
the niche of vectors and both present-day and future climate conditions were identified as Risk A (risk under 
present-day and future scenario; red). Areas of Ecuador with climate under present-day overlapping with the 
niche of vectors were defined as Risk B (risk under present-day only; pink). Areas with overlap between the 
niche of vectors and future climate in Ecuador only were defined as Risk C (risk under future climate only; 
brown). (Figure created using Adobe Photoshop CC 2014 https://www.adobe.com).

https://www.adobe.com
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Figure 2.  Maps of potential transmission risk in Ecuador. Vector species were grouped by disease.  
(a) arboviruses (chikungunya, dengue, yellow fever, and zika); (b) malaria; (c) leishmaniasis; and (d) chagas 
disease. Hotspots of vector prediction suggested areas of high (red) or low (yellow) disease transmission risk. 
(Figure done using the raster and rasterVis packages in R version 3.3.1: A Language and Environment for 
Statistical Computing, R Core Team, R Foundation for Statistical Computing, Vienna, Austria (2016) https://
www.r-project.org).

https://www.r-project.org
https://www.r-project.org
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other words, there is a physiological upper limit that cannot be exceeded easily by species, providing some confi-
dence to our estimation. Our results show a benefit of climate change in terms of plausible extinction and range 
reduction for some vectors and consequent decrease in exposure risk for people, contrasting with the proposed 
negative effects of climate change on human health18. Our findings support other mathematical modeling and 
laboratory experiments proposing potential benefits of climate change in terms of limiting the burden of malaria 
and dengue vectors19–22, mitigating potential overinterpretation of other studies suffering incorrect study designs 
and thus proposing dramatic impacts of future climate on the epidemiology of infectious diseases which could 
fail to inform decision makers with realistic scenarios. Studies showing the attenuated negative impacts on the 
epidemiology of some vector species may help to reduce focus on the effects of climate change on the burden of 
vector-borne diseases of likely reduced future importance, and may encourage scientists to instead focus on the 
effects of other equally or more important factors for future human health, such as land use change, to help in the 
design and implementation of effective public health policies. We argue that a mature understanding of climate 
change effects on health could be achieved if and only if the research communities moves to a broader interpreta-
tion of climate effects, covering plausible negative and positive effects of such changes across ecosystems and taxa.

We have assumed static patterns of human density in Ecuador in face of climate change, in other words, given 
that we based our estimation on values of human density, we assume that the present-day patterns of low and 
high will remain in the future. However, human displacement as a result of climate change is a complex factor that 
deserves further exploration. Further, topographic steepness limits the potential for upslope human migrations 
in the region, with most non-steep upland areas already densely occupied. While there is consensus that vectors 
are sensitive to weather and climate23, there is still uncertainty on the various impacts of climate variability on 
fine-scale transmission dynamics and socioeconomic variables23,24. We mitigated uncertainty in our forecasts by 
tuning model parameters for biologically realistic predictions by capturing the environmental tolerances of vec-
tors from their entire geographic range and assessing model fit with available data. Our present-day predictions 
highlight areas of vector suitability at high spatial resolution for all the species included in this study. These areas 
suitable for vectors occurrence should be considered into account by public health authorities given the plausible 
disease underreporting in Ecuador (i.e., epidemiological silence14). The areas predicted to be of present-day risk 
may be of special interest for testing control measures and for identifying currently neglected human populations. 
The areas found suitable via remote sensing data could be also useful to guide local studies aiming to understand the 
distributional ecology of vectors, considering their interaction with other vector species, prey, variations in micro-
climate, availability of breeding sites, and the effects of socio-economic factors facilitating vectors’ occurrence25.  
Such local-scale factors were not considered in this study, but would provide valuable information to bet-
ter understand fine-scale patterns in the ecology of vectors across different geographic and temporal scales26.  

Figure 3.  Potential vectors’ distribution under current and future climate scenarios. Number of  
pixel cells (1 km; y axis) predicted suitable by period (x axis) for vector species of arboviruses (a), malaria  
(b), leishmaniasis (c), and chagas disease (d) were estimated under current and future climate conditions by 
2030, 2050, and 2100.
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An inter-sectoral approach should be implemented at the municipality level to address issues of sanitation, safe 
water availability, and preventive health care in areas predicted of present-day risk (Fig. 2).

Our models were based on a broad-scale biogeographic approach27, therefore we did not consider microcli-
matic conditions at local scale and avoided the complexities and uncertainties of including factors such as biolog-
ical interactions in the modeling12. We accounted for the environmental tolerances of vector species from vector 
records across the entire global distribution of each species. This framework should reduce the risk of incomplete 
niche estimation (niche truncation) due to failure to represent the full niche space for a species in the model  
calibration28, i.e., by including records from as wide areas in geographic and environmental space as possible (e.g., 
the entire species range). Thus, for species of broad distributions (e.g., global), making models with data from the 
areas of interest only (e.g., Ecuador) could capture a limited portion of the species’ ecological niche generating 
an incomplete characterization of the species’ environmental tolerances. Models calibrated using a subset of the 
species’ range will generate sub-estimations of the species’ ecological niche and in turn sub-estimations of its 
potential distribution.

The future climate forecasts used in this study (A2; 2030, 2050, 2100) are realistic scenarios of the environmen-
tal conditions that may be present in Ecuador given the ongoing trends in greenhouse gas emissions29. Predictions 
in future climate scenarios showed a likely expansion of exposure risk of all pathogens to populations in the 
highlands of Ecuadorian Andean regions. The geomorphology and latitudinal position of Ecuador may suggest 
similar predictions for other tropical regions. Although potential range shifts and extinction have been reported 
for the future distribution of several plant and animal species30, we complement this information with the poten-
tially negative effects of climate change on range contraction, displacement, and extirpation of vectors species, 
and an overview of changes in patterns of human populations at risk for Ecuador. These estimates were based on 
the assumption of niche conservatism of vector species31. By supporting this assumption, our findings provide 
information to anticipate strategies to reduce the burden of vector-borne diseases via increasing the awareness 
in areas currently disease-free, but predicted vulnerable to vectors displacement. An early warning scheme in 
Andean region should be formulated with inclusion of non-endemic vector species given risk predicted in high-
lands and the limited understanding of the colonization capacity of vectors in face of climate change. Preventive 
measures can contribute globally to the early detection and prevention of vector-borne diseases in highlands 
worldwide in face of global warming. Despite the local benefits of reduced transmission due to the extinction of 

Figure 4.  Percent change of vector potential distribution and potential for human exposure to vectors 
under present-day and future climate. Present-day models were compared against future climate by 2030  
(a), 2050 (b), and 2100 (c) in terms of area (x axis) and human population at risk of exposure (y axis). Top right 
quadrant (pink) denotes an increase in vectors’ range and human population at risk. Bottom-right (green) 
resembles an increase in range, but reduction in the number of humans exposed. Bottom-left (blue) denotes 
reduction in vectors’ range and reduction in population predicted at risk. Top-left (yellow) denotes increase in 
human populations at risk, but reduction in the vector’s range. Zero means no change. (Plots done using the 
raster package in R version 3.3.1: A Language and Environment for Statistical Computing, R Core Team, R 
Foundation for Statistical Computing, Vienna, Austria (2016) https://www.r-project.org).

https://www.r-project.org
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specific vector species, range shifts of other vectors could increase vector-borne diseases incidence and spread, 
resulting in epidemiological surprises32. Based on our mixed results of positive and negative effects of future 
climate on human exposure to disease vectors, we argue that research on vector-borne diseases in face of future 
environmental change should be cross-scale and include climatic, demographic, and landscape factors, as well 
as forces facilitating disease transmission acting at fine scales. Importantly, care should be take that vector-borne 
disease research on climate change effects will not discourage health agencies from research into understanding 
local transmission processes and implementing control measures for critical threats of disease transmission at the 
local level including human behavior and habitat destruction.

Methods
We forecasted the distribution of disease vectors under present-day conditions and future climate in Ecuador 
using vector records across their entire global ranges from data of museum collections and literature. After vector 
occurrence data curation, we developed ecological niche models for each vector species in Maxent33,34, assuming 
that each species record originated from a stable vector population instead of migratory or accidentally trans-
located individuals. We assessed regularization coefficients and model complexity in Maxent34,35. Our model 
evaluation was based on information theory through assessing Akaike information criterion (AIC) values to 
explore model fit with the data available35, which provides robustness to our model assessment procedure, a key 
factor when modeling infectious diseases10. Thus, AIC is a well-known method to discriminate among mod-
els, especially when working with the Maxent algorithm employed in our study35. Additionally, using Maxent 
we estimated the Area Under the Curve of the Receiver Operating Characteristic values as this metric is com-
monly employed to assess the specificity and sensitivity of models. The final models, calibrated on each species’ 
entire range, were projected to Ecuador under present-day and future climatic conditions using strict model 
transference36,37. Potential distribution of vectors were forecasted under present-day conditions using remote 
sensing imagery including EVI time series data and land surface temperature38, and precipitation values from 
field stations39, while future climate models where calibrated in present-day climate and then projected to future 
climate conditions, based on data of the CliMond repository39. We used the SRES A2 scenario (Special Report 
on Emissions Scenarios) of future climatic conditions given that Latin America has increasing populations, eco-
nomic development, per capita economic growth, but also relatively fragmented and slow technological change 
and limited abilities to mitigate greenhouse effects40, and considering that the last IPPC assessment concluded 
that there are not important improvements to reduce emissions worldwide41. Indeed, since the first future climate 
scenarios, the more optimistic low-emission scenarios have become implausible given the ongoing empirical 
trends in emissions29,42,43. The A2 scenario is equivalent to the Representative Concentration Pathway (RCP) 8.5 
proposed in the IPCC Fifth Assessment Report (AR5)41. Additionally, we developed non-analogous environment 
evaluations using the Mobility Oriented Parity test (MOP) script in R37 to ensure that future predictions were 
restricted to regions in Ecuador with analogous climates somewhere in range of each species, to avoid extrap-
olation uncertainties. The final maps were used to identify the percentage of area predicted as suitable in each 
climate scenario. We used the LandScan human population estimates for year 2011 at 1-km spatial resolution44 
to estimate the people living within the suitable areas for a given vector species. Estimation based on current cli-
mates was compared with models of future climate conditions to establish the percent of change among climate 
scenarios. A detailed description of the modeling framework is available in the Supplementary Material.
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