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Figure S1. Binary models of vectors by disease. Model calibrated in the study area 

“M” was transferred to continental Ecuador under present-day and future climate 

conditions by 2030, 2050, and 2100 for vectors of malaria (An. albimanus (a), An. 

darlingi (b), An. neivai (c), An. pseudopunctipennis (d), An. puntimacula (e)), arbovirus 

(Ae. aegypti (f) and Ae. albopictus (g)), leishmaniasis (Lu. gomezi (h), Lu. hartmanni (i), 

Lu. trapidoi (j)), and chagas (Rhodnius ecuadoriensis (k), T. carrioni (l), T. dimidiata 

(m), T. dispar (n)). (Maps done using the raster and rasterVis packages in R version 

3.3.1: A Language and Environment for Statistical Computing, R Core Team, R 

Foundation for Statistical Computing, Vienna, Austria (2016) https://www.r-project.org)

https://www.r-project.org/
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Figure S2. Comparison of climates between present-day climate in study areas M 

and future conditions in continental Ecuador. An. albimanus (a), An. darlingi (b), An. 

neivai (c), An. pseudopunctipennis (d), An. puntimacula (e), Ae. aegypti (f), Ae. 

albopictus (g), Lu. gomezi (h), Lu. hartmanni (i), Lu. trapidoi (j), Rhodnius ecuadoriensis 

(k), T. carrioni (l), T. dimidiata (m), T. dispar (n). Mobility-Oriented Parity (MOP) 

analysis showing non-analogous climates (black cells) and Multivariate Environmental 

Similarity Surface (MESS) test showing high (red) and low climatic similarity (blue) for 

2030, 2050, and 2100. Box plots of maximum temperature of the hottest week identify 

temperature of Ecuador inside (below the red line) or outside (above the red line) the 

range of temperature across the vectors’ range (M) in present-day and future climate 

periods. (Maps done using the raster package in R version 3.3.1: A Language and 

Environment for Statistical Computing, R Core Team, R Foundation for Statistical 

Computing, Vienna, Austria (2016) https://www.r-project.org)

https://www.r-project.org/
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Figure S3. Consensus maps of overall risk of exposure to disease vectors in 

Ecuador. Assemble of binary vector models, under present-day (a) and future climate 

conditions by 2030 (b), 2050 (c), and 2100 (d), to identify areas of high (red) or low 

(blue) potential vector occurrence. (Maps done using the raster and rasterVis packages 

in R version 3.3.1: A Language and Environment for Statistical Computing, R Core 
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Team, R Foundation for Statistical Computing, Vienna, Austria (2016) https://www.r-

project.org)  

https://www.r-project.org/
https://www.r-project.org/
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Supplementary Material: Methods 

 

Dengue 

Dengue fever is the most widely distributed vector-borne disease in Latin America and 

the Caribbean; from 2000 to 2010 dengue was reported by 40 countries and territories 

in the Americas1,2. Dengue virus is a mosquito-borne positive stranded RNA arbovirus, 

grouped into five serotypes3. Globally, Aedes aegypti, commonly known as the yellow 

fever mosquito, is the primary vector species; however, other Aedes, such as Ae. 

albopictus, the Asian tiger mosquito, are also important vectors of dengue4. Dengue 

fever in Ecuador was mostly controlled by the 1950’s through intensive vector control 

strategies, nevertheless, the disease re-emerged in 1988 and is currently endemic in 

the country with a variable spatial and seasonal distribution5,6. Dengue epidemiology 

shows annual peaks of hemorrhagic cases, from hundreds to thousands of cases per 

year (Fig. S4). In Ecuador, data of dengue without signs of alarm or non-hemorrhagic 

dengue (“dengue sin signos de alarma”) revealed more than 15,000 cases in 2010 and 

13,865 cases in 20145. In the period between January and October 2015, 42,483 cases 

of dengue were reported in Ecuador7, and by September 2016, at least 12,571 cases 

have been reported8. Most of these dengue infections occurred in the subtropical region 

of the country, including the Amazon region, the Pacific coast, and the Galapagos 

islands; a low number of cases were imported from tourism and traveling populations7,5.  
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Figure S4. Case reports of vector-borne diseases in Ecuador by October 2015. 

Note the consistent incidence of dengue fever and recent epidemic (a), the sustained 

reduction on malaria reports (b), an increasing in leishmaniasis cases is observable in 

2015 (c), and reduction of chagas disease incidence since 2010 (d). Source: 7,5. (Plots 

done using R version 3.3.1: A Language and Environment for Statistical Computing, R 

Core Team, R Foundation for Statistical Computing, Vienna, Austria (2016) 

https://www.R-project.org) 

 

Leishmaniasis 

Leishmaniasis is a neglected disease in Ecuador reported since the beginning of the 

20th century and has been recorded from 21 of the 24 Ecuadorian provinces9. To date, 

at least eight Leishmania spp. have been identified to infect humans and non-human 

mammals10,11. Leishmaniasis reports in rural areas occur from sea level to ~2,700 m 

https://www.r-project.org/
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elevation11. More than 60% of all Leishmania species of Ecuador are reported in the 

subtropical and tropical lowlands of the Pacific region (Fig. S5), where Le. panamensis 

and Le. guyanensis are the most common. In the highlands of the Andes region in 

central Ecuador (Fig. S5), the main leishmaniasis agents are Le. mexicana (>80%) and 

Le. major-like11–14. In this country, leishmaniasis reached 2,628 cases by 2000, 

decreasing to 935 cases by 20145. By May 2016, ~1,400 cases of leishmaniasis were 

reported15 (Fig. S4).  

 

Leishmaniasis is transmitted by infected phlebotomine sandflies of the genus 

Lutzomyia. From the approximately 81 sandfly species reported in Ecuador, only a few, 

including Lu. trapidoi and Lu. gomezi have been incriminated as disease vectors16,17. In 

the Andes foci of Leishmaniasis, six anthropophilic Lutzomyia (hartmanni, gomezi, 

nevesi, ayacuchensis, serrana, and osornoi) have been identified to date9.  
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Figure S5. Topographic and population features of continental Ecuador. a) 

Elevation map. Notice the highlands in central Ecuador (white) representing the Andes 

Mountains. b) Population distribution at one-kilometer resolution cells across Ecuador 

by 2011 LandScan data [Ref. 18]. (The population map was made utilizing the LandScan 

2011™ High Resolution global Population Data Set copyrighted by UT-Battelle, LLC, 

operator of Oak Ridge National Laboratory under Contract No. DE-AC05-00OR22725 

U.S. Department of Energy. The United States Government has certain rights in this 

Data Set. Neither Ut-Battelle, LLC nor the U.S. Department of Energy, nor any of their 

employees, makes any warranty, express or implied, or assumes any legal liability or 

responsibility for the accuracy, completeness, or usefulness of the data set). (Maps 

created using ArcGis, Envrionmental Systems Research Institute, version 10.2, 

Redlands, CA (2016) http://www.esri.com/)  

http://www.esri.com/
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Chikungunya 

Chikungunya is an arboviral disease with symptoms somewhat similar to dengue fever, 

characterized by sudden onset of fever, rash, and severe joint pain lasting until 14 days; 

some cases result in persistent arthritis even 25 days after initial symptoms19. At the 

end of 2014, the first imported case of chikungunya virus was reported in Ecuador and 

less than a year later, the number of locally transmitted cases raised to ~30,000 since 

the start of the epidemic to October 20157. Strikingly, the number of chikungunya cases 

is likely underreported in the country20 with 7.5 % of cases established by 

epidemiological link. Additionally, the eminent risk of the introduction of other 

arboviruses to Ecuador is an emergent public health concern; for example, by 

September 2016 zika virus has been detected in at least 2,000 human patients in 

several coastal provinces of the country21. Yellow fever is nowadays a disease of less 

concern, but still present in Ecuador22. 

 

Malaria 

Malaria is still the most important vector-borne disease worldwide transmitted by 

Anopheles mosquitoes23 with reports of up to 80,000 cases/year in Ecuador. 

Interestingly, the country has been reporting most cases of dengue and few cases of 

malaria in the last five years24 (Fig. S4), a pattern that changes the current public health 

priority from malaria to dengue25. This trend has been poorly addressed and might be 

associated with efficient vector control programs, reduction in epidemiological 

surveillance, or other factors including climate variability reducing vector abundance as 
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fewer cases of malaria have been reported even in regions lacking Anopheline 

mosquitoes control. However, malaria is still of importance in Ecuador given the 

potential for re-emergence, the persistence of Anopheline mosquitoes in rural areas 

where the disease was endemic, the mortality associated with infection, and DALYs23. 

By May 2016, 229 cases of malaria were reported in Ecuador15. 

 

Chagas 

Chagas disease is another vector-borne disease historically endemic in the Andean 

region and in Ecuador where it is still a cause of morbidity and mortality (Fig. S4 and 

S5). It is transmitted by the feces of infected triatomine bugs and can cause chronic 

infections with permanent damage to several organs including the heart, the 

esophagus, and the colon. From the approximately 16 species of triatomine bugs 

reported in Ecuador only Triatoma dimidiata and Rhodnius ecuadoriensis and a few 

others have been incriminated as vector of chagas disease26. Vector eradication 

campaigns driven by the central government have largely controlled vector populations 

in cities as Guayaquil and Machala in southern Ecuador in the past, but transmission 

continues in residual endemic foci27–29, while the transmission at the Amazon basin has 

been poorly investigated30–32. By October 2015, seven cases of chagas disease were 

reported in Ecuador15. 

 

The framework of our modeling approach included a detailed characterization of the 

study area, occurrences, and model fit for each vector species under present-day 
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environmental conditions derived from satellite imagery and future climate. A summary 

of the methodology is found in Figure S6 and is explained in detail below. 

 

Figure S6. Modeling frameworks employed in this study. Models of vector species 

were developed using satellite imagery and climate data. Final predictions were 
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converted to binary maps. Binary maps were then used to identify hotspots areas of 

potential risk of exposure to vectors. MTP: Minimun training presence. (Grids done 

using the raster package in R version 3.3.1: A Language and Environment for Statistical 

Computing, R Core Team, R Foundation for Statistical Computing, Vienna, Austria 

(2016) https://www.R-project.org <https://www.r-project.org>) 

 

Vector occurrence  

We determined the environmental conditions necessary for vectors using geographic 

coordinates of vector reports and environmental variables under present-day 

environmental conditions, then, the existence of such environmental conditions was 

determined across Ecuador (Fig. 1 of the manuscript). We selected vector species 

associated with six vector-borne diseases recognized in Ecuador including malaria, 

chikungunya, dengue, leishmaniasis, chagas disease, and yellow fever, as well as zika 

fever. The vector species corresponding to each disease included mosquitoes, kissing 

bugs, and sandflies (Table 1 of the manuscript). 

 

To obtain vector occurrence data, we conducted a review from March to April 2015 in 

open access biodiversity datasets at the Global Biodiversity Information Facility33 and 

SpeciesLink34 networks with data provided by natural history museums collections from 

field captures and identification of species by experts35. Museum collection providing 

such data included: Centro de Pesquisa René Rachou (Coleção de Mosquitos 

Neotropicais CMN-Fiocruz); University of Puerto Rico (Invertebrate Collection); Field 

Museum of Natural History (Zoology), Insect, Arachnid, and Myriapod Collection; 

https://www.r-project.org/
https://www.r-project.org/
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European Molecular Biology Laboratory (EMBL); Lyman Entomological Museum 

(LEMQ) from McGill University; Walter Reed Biosystematics Unit, Smithsonian 

Institution; Ibáñez Bernal, S. 1998 de Yucatán, México; and María Cristina Mayorga 

Martínez museum, Instituto de Biología, UNAM. A vector occurrence was represented 

as geographic coordinates of a single vector report. Complementary occurrences for 

unrepresented species (i.e., <5 occurrences) were obtained from a review of scientific 

articles searched in Google Scholar, SCIELO, and PubMed. Keywords were the 

scientific name of the vector species e.g. “Rhodnius ecuadoriensis;” we reviewed 

literature in both Spanish and English to identify site locations of the species report36–42. 

We removed the duplicate occurrences by species to obtain single occurrence points by 

site and to reduce model overfitting due to oversampled areas43 (Supplementary 

Dataset). The vector occurrence records were then used to develop ecological niche 

estimations, under the assumption that each record originated from a stable population 

that can persist without need of immigration.  

 

Areas for model calibration 

A critical step in the niche modeling process is the selection of areas for model 

calibration43; the extent of such areas dramatically impacts the area predicted as 

suitable for vector occurrence44. The study design of ecological niche models should be 

based on biogeographic features for each vector species44. For this, study designs 

should follow the BAM framework (sensu Soberón and Peterson45). This framework is 

used in modern ecology during the study design and interpretation of ecological niche 

modeling. The BAM framework identifies three factors that interact in the species’ 
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ecological niche delimitation: B: biotic; A: abiotic; and M: dispersal capacity. Under this 

framework and in view of the considerable effects of the study area extent in model 

results44, modelers should establish specific geographic areas for model calibration for 

each species according to the species’ dispersal capacity M.  

 

Considering the impact of the study area extent on ecological niche model predictions 

and the need for biological realism in the study design43,44, models should be calibrated 

in areas representing a proxy of M44. We assumed that each species’ M could be 

estimated based on the average geographic distance among vector occurrences46. 

Briefly, for each vector species we estimated a centroid point from all the occurrences of 

the vectors’ distribution and measured the distance between the centroid to all the 

occurrences (Table S1). We focused on the vectors’ native range to avoid over 

estimation in transoceanic dispersal of the invasive vectors of the Aedes genus. The 

average geographic distance between the centroid and occurrences was used to 

generate a buffer zone where models were calibrated (Fig. S7). This method provides 

impartiality from the modeler to establishing the extent of the calibration area, 

furthermore it is based on the potential dispersal of the species providing biological 

meaning to model results, and allows the characterization of the environments occupied 

by species across their distribution44. For the estimation of the average distance 

between occurrences of Ae. aegypti and Ae. albopictus, we used occurrences in the 

native ranges of Africa and South Asia respectively47. For all other species, we 

estimated the average distance restricted to reports of their native distribution in the 

Americas. 
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Supplementary Table S1. Distance among vector occurrences in the geographic 

space (geographic degrees). 

Vector species Mean 

Aedes aegypti (Linnaeus 1762) 23.27 

Anopheles albimanus (Wiedemann 1821) 10.34 

Aedes albopictus (Skuse 1895) 13.50 

Anopheles darlingi (Root 1926) 13.19 

Anopheles neivai (Howard Dyar & Knab 1914) 5.41 

Anopheles pseudopunctipennis (Theobald  1901) 1.31 

Anopheles punctimacula (Dyar & Knab 1906) 5.33 

Lutzomyia gomezi (Nitzulescu 1931) 3.84 

Lutzomyia hartmanni (Fairchild & Hertig 1957) 3.21 

Lutzomyia trapidoi (Fairchild & Hertig 1952) 1.32 

Rhodnius ecuadoriensis (Lent & Leon 1958) 1.32 

Triatoma carrioni (Larrousse 1926) 1.37 

Triatoma dimidiata (Latreille 1811) 7.37 

Triatoma dispar (Lent 1950) 0.67 
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Figure S7. Study area “M “used in this study for model calibration based on the 

species’ potential dispersal. Average distances between points for Ae. aegypti and 

Ae. albopictus were estimated based on occurrences from their native area of 

distribution. Average distances were employed to generate a buffer zone (red line) 

around occurrences (green points). (Figures created using ArcGis, Envrionmental 

Systems Research Institute, version 10.2, Redlands, CA (2016) http://www.esri.com/) 

 

Present-day environmental variables 

We generated ecological niche models using environmental variables with biophysical 

relevance in vectors biology48. For our present-day estimations, we used environmental 

variables in the form of satellite imagery from the Moderate-resolution Imaging 

Spectroradiometer (MODIS) at ~1 km spatial resolution from the WorldGrids 

repository49. Original variables included the maximum, mean, minimum, and standard 

deviation values of land surface temperature values of 8-days composites; one data set 

captured at daytime and another at nighttime during 2011-2012, mean and standard 

deviation values of the monthly MODIS enhanced vegetation index (EVI) during time 

series data for 2001-2012, and long-term MODIS-estimated Evapotranspiration during 

2000-2012. Additionally, we included long-term precipitation for four periods comprising 

i) November, December, and January; ii) February, March, and April; iii) May, June, and 

July; and iv) August, September, and October with time series data (1950-2000) from 

the Worldclim repository50. We used the software NicheA version 3.0 to identify 

correlation between environmental variables51, and removed layers with high correlation 

(>0.8) and important gaps of data in Ecuador (i.e., >1% area of the country). 

http://www.esri.com/
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Climate change environmental variables 

Models for future climate were calibrated based on historical climate data and then 

projected to a future climate scenario. We used climate data from version 1.2 of bioclim 

variables from the Climond repository at 10' spatial resolution52. Present-day climate 

variables are composed by historical data from 1961-1990. For the future climate 

scenarios, we used the A2 model, as proposed by the Intergovernmental Panel on 

Climate Change (IPPC), including scenarios for years 2030, 2050, and 210052. This 

future climate scenario was selected considering the consistent use of fossil fuel with no 

global agreement to reduce greenhouse gas emissions52. Previous conservative models 

of future climate, especially the B family (i.e., B1, B2), have been proposed as 

implausible considering recent emissions records53–55. The A2 model from the SRES 

scenario is equivalent to the 8.5 model from the RCP scenario. Indeed, RCP 8.5 was 

based on the socio-economic and demographic background, assumptions, and 

technological approach of the IPCC A2 SRES56. In practical terms, A2 values fall 

between RCP 6 and 8.5 [Ref. 57,58]. Climate variables included bioclimatic variables from 

Bio 1 to Bio 3552,59. We removed highly correlated variables (>0.8) and selected those 

that, according to us, have high biological relevance for vector species60. For realistic 

interpretations of models under future climate conditions61,62, we assessed 

environmental similarity between vectors present-day and future climate distribution in 

Ecuador via Mobility-Oriented Parity (MOP) and Multivariate Environmental Similarity 

Surface (MESS)61,63 analyses in R64. 
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Ecological niche modeling 

Ecological niche models were developed using Maxent software version 3.3.3.k65. 

Maxent uses a logistic regression-like algorithm which associates environmental 

variables with vector occurrences (for a detailed explanation of algorithms used by 

Maxent see66,67). Several models were developed for each species to obtain the best 

model fit as follows. First, models for each species were calibrated under present-day 

climate conditions using different regularization coefficients. Low regularization 

coefficients generate model overfit to the conditions of the location of vector occurrence, 

while a high regularization coefficient allows overprediction. To identify the model with 

the best fit with the data, we explored models using ten parameter levels in Maxent 

including 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5 [Ref. 68]. Model fit was measured 

according to Akaike information criterion (AIC) values using the ENMTools software 

version 1.4.4 [Ref. 69]. Given the high number of occurrences, Ae. aegypti and Ae. 

albopictus models using remote sensing data were developed using a regularization 

coefficient of 1. 

 

Models with the highest performance, based on regularization coefficient evaluations 

were used to build final models for each species in the calibration areas M and were 

later transferred to continental Ecuador under present day and future environmental 

conditions. Areas with environmental overlap between the vector’s niche and 

environments available in Ecuador were defined as areas of “risk of exposure to 

disease vectors,” based on the environmental suitability for vector species (Fig. 1 in the 

manuscript). Maxent settings for the final models included median of the logistic output, 



 23 

random seed, 100 bootstrap permutations, and clamping and extrapolation turned off for 

an strict model transference in Maxent63,69, in view of the perilous predictions in novel 

environments when extrapolation and clamping are allowed in the algorithm61,62,70. In 

sum, we generated 220 models by each species for a total of 3,080 models for all 

species, including present and future climate conditions. From the 100 model 

permutations, we estimated the mean values of the area under the curve (AUC) of the 

of the receiver operating characteristic to evaluated models in terms of sensitivity and 

specificity65. Final models were converted to binary using a threshold based on 

minimum training presence (Fig. S6). These maps were used to estimate suitable areas 

by vector on present-day climates and people living in these suitable areas. We 

estimated overall patterns of people density exposed to vectors under current climate 

using 1 km resolution of human population in Ecuador from LandScan18. We employed 

this data set also to assess the population at risk under future conditions considering 

the agreement of LandScan with future human population models from Ecuador71 (r2 = 

0.43, p < 2 x 10-16). We then estimated the area predicted suitable for the vectors. 

Finally, we estimated the percent of change of area suitable for the vector species and 

population exposed to vectors between present-day and future climate scenarios.   



 24 

Supplementary Material: Results and Discussion 

 

Occurrences  

In all, 1,184 single occurrences were obtained from the 14 vector species included in 

this study (Supplementary Data). We obtained 421 occurrences for An. albimanus, 288 

for Ae. aegypti, 267 for Ae. albopictus, 35 fo An. neivai, 49 An. punctimacula, 29 for An. 

darlingi, 28 for Lu. hartmanni, 26 for An. pseudopunctipennis, 10 for T. dimidiata, 8 for 

T. carrioni, 7 for Lu. gomezi, 6 R. ecuadoriensis, 5 for Lu. trapidoi, and 5 for T. dispar. 

Most species were reported from more than one country, except for An. 

pseudopunctipennis, R. ecuadoriensis, T. carrioni, and T. dispar reported in Ecuador 

only (Fig. S7). The continent with most occurrences for a single species’ was the 

Americas for An. albimanus and Ae. aegypti. The Americas covered the entire range for 

11 of the 14 vector species modeled.  

 

Present-day models 

The selected uncorrelated variables for our present-day models were mean and 

standard deviation of the monthly EVI time series data; long-term precipitation for two 

periods including i) November, December, and January; and ii) May, June, and July; 

maximum value and standard deviation of the 8-day MODIS day-time LST time series 

data; and the mean value and standard deviation of the 8-day MODIS night-time LST 

time series data. We did not include minimum and mean value of the 8-day MODIS day-

time LST time series data, long-term MODIS-estimated evapotranspiration, and the 

mean value of the long-term lights at night images, as they have important gaps in data 
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in continental Ecuador. For the future climate models environmental variables were 

annual mean temperature (°C), mean diurnal temperature range (mean[period max-

min],°C)), annual precipitation (mm), precipitation seasonality (%), precipitation of 

warmest quarter (mm), annual mean radiation (W m-2), radiation seasonality (%), 

radiation of wettest quarter (W m-2), and radiation of warmest quarter (W m-2).  

 

The M estimation for Ae. aegypti represented the broader study area, with occurrences 

in five continents (Fig. S7). Ae. albopictus followed in geographic extent with an M 

distributed across Africa, the Americas, Asia, and Europe; in Africa the species’ 

occurrence was restricted to Madagascar island. An. albimanus occurrences extended 

its M to the Americas and Europe. An. neivai extended its M from northwest South 

America (i.e., Colombia, Ecuador, and northern Peru) to Honduras. An. punctimacula 

extended from northern Colombia and Venezuela to southern Mexico. M estimations for 

Lu. gomezi and Lu. hartmanni included Colombia, Ecuador, Panama and Venezuela, 

whereas Lu. trapidoi included southern Panama, northern Colombia, Peru and Ecuador. 

In the case of An. pseudopunctipennis, R. ecuadoriensis, and T. carrioni, Ms included 

the Andean region of Ecuador, southern Peru, and northern Colombia. T. dispar was 

restricted to Ecuador (Fig. S7). 

 

According to our AIC evaluations, the best regularization coefficients based on remote 

sensing data and precipitation ranged between 0.5 and 3, the most frequent values 

were 1 and 2, while for models based climate for future conditions, parameters ranged 

between 0.5 and 5, the most frequent was 0.5 (Table S2). There was a negative 
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association between the number of parameters and AIC values (r2 range = 0.42 - 0.93; 

p<0.05), with the exception of R. ecuadoriensis when calibrated using climate. We did 

not find associations between the number of occurrences and the regularization 

coefficient value of the best Maxent models calibrated using remote sensing (r2 = 0.31; 

p=0.07) nor climate (r2 = 0.18; p=0.15). We found associations between the lowest AIC 

values and lowest regularization coefficients in 67% of the vector species modeled 

using remote sensing and in 64% of the species modeled using climate (Table S2). The 

AUC evaluations showed a good discriminatory capacity of models to predict 

occurrences better than a random model (Table S3). 
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Supplementary Table S2. Akaike information criterion (AIC) values for model 

selection. AIC values for models based on present-day MODIS + precipitation variables 

at ~1 km and present bioclimatic variables at ~19 km. The best models (bold) were 

selected according to lowest AIC values. Number of parameters are shown in 

parenthesis. x = evaluation excluded (e.g., more parameters than occurrences). 

 

Species Regularization coefficient 

MODIS +  
precipitation ~1 km 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

Anopheles albimanus 1,0937.45 10,956.94 10,991.50 11,048.04 11,065.12 11,083.63 11,068.54 11,096.27 11,103.9 11,099.96 

An. darlingi x x x 880.85 877.32 878.06 880.53 883.63 889.53 896.02 

An. neivai x x 1,017.41 1,006.96 1,004.47 1,003.37 1,029.9 1,008.84 1,005.21 1,009.53 

An. 
pseudopunctipennis x 610.44 609.65 604.39 606.46 610.39 614.74 619.55 622.9 631.06 

An. punctimacula x 1,324.91 1,306.4 1,291.37 1,295.1 1,294.51 1,298.42 1,301.98 1,299.63 1,303.79 

Lutzomyia gomezi 203.97 204.57 203.86 202.28 200.31 200.31 200.31 200.31 200.31 200.31 

Lu. hartmanni x 723.57 719.67 725.5 724.96 719.45 723.78 726.36 726.11 729.22 

Lu. trapidoi  141.43 140.89 139.93 139.93 139.93 139.93 139.93 139.93 139.93 139.93 

Rhodnius 
ecuadoriensis x 145.44 150.39 149.49 148.08 148.27 148.46 148.67 148.89 149.11 

Triatoma carrioni 191.63 195.06 197.71 199.53 202.59 201.41 201.8 202.23 200.61 200.63 

T. dimidiata x 286.32 291.82 291.33 291.82 292.43 294.08 296.11 296 296.2 

T. dispar x x 112.65 112.31 113.23 111.76 112.03 112.31 112.6 112.89 

CliMond ~19 km           

Ae. aegypti 5,588.95 5,645.31 5,635.58 5,633.59 5,650.18 5,642.46 5,653.82 5,660.49 5,648.95 5,656.28 

Ae. albopictus 4,404.84 4,511.08 4,577.26 4,614.39 4,661.02 4,667.47 4,667.56 4,668.11 4,673.65 4,676.71 

Anopheles albimanus 6,507.90 6,593.58 6,640.90 6,664.24 6,689.72 6,707.87 6,744.19 6,762.24 6,789.82 6,797.16 

An. darlingi x x x 626.58 623.72 626.63 613.40 596.10 600.44 600.87 

An. neivai x x 887.39 889.62 893.52 903.82 919.45 927.76 930.63 943.20 

An. 
pseudopunctipennis x x 326.47 320.64 316.19 317.60 318.06 321.91 327.51 329.25 

An. punctimacula x x x x 801.16 778.53 775.23 779.66 766.41 761.67 

Lutzomyia gomezi 117.99 117.10 118.25 116.97 117.47 117.95 117.99 117.95 117.24 117.51 

Lu. hartmanni x x 464.54 460.96 457.81 466.38 468.73 456.85 454.62 452.17 

Lu. trapidoi  x 83.27 82.53 81.12 81.62 82.08 x x x x 

Rhodnius 
ecuadoriensis 81.76 x x x x x x x x x 

Triatoma carrioni 108.36 108.44 107.64 106.62 107.52 106.29 107.02 105.39 105.71 106.02 

T. dimidiata 166.58 174.92 180.68 178.52 179.46 180.22 178.19 179.42 180.80 180.39 

T. dispar x x 57.68 x x x x x x x 
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Supplementary Table S3. Area under the curve (AUC) values for model 

evaluation. Average AUC values for models based on present-day MODIS + 

precipitation variables at ~1 km and present-day bioclimatic variables at ~19 km.  

Final mean AUC 

Species 
Remote 

sensing data 
Climate 

data 

Ae. aegypti 0.94 0.97 

Ae. albopictus 0.96 0.98 

A. albimanus 0.95 0.98 

A. darlingi 0.91 0.80 

A. neivai 0.85 0.95 

A. 
psuedopunctipennis 

0.85 0.82 

A. punctimacula 0.88 0.83 

L. gomezi 0.75 0.76 

L. hartmanni 0.86 0.77 

L. trapidoi 0.87 0.83 

R. ecuadoriensis 0.89 0.77 

T. carrioni 0.92 0.73 

T. dimidiata 0.93 0.93 

T. dispar 0.81 0.80 
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When the final models were developed and transferred to Ecuador, broad suitable 

areas were found across the country for Ae. albopictus and Ae. aegypti; highlands in 

central Ecuador limit the potential distribution of these vectors, but Ae. aegypti appear to 

be a more generalist species, tolerating environments available in highest zones (Fig. 

S1). In contrast to countries located in temperate regions, tropical countries possess 

only two climatic seasons (i.e., rainy and dry) with high minimum temperatures and 

rainfall favoring vector species such as Ae. aegypti mosquito abundances and lead to 

the increase of dengue cases during the rainy season72,73. A recent global prediction 

anticipates that the global burden of chikungunya and dengue may increase under 

future climate scenarios if Aedes mosquitoes are considered74. Herein, we focused in 

Ae. aegypti and Ae. albopictus, as the first is currently reported in Ecuador, and the 

second is highly abundant in Ecuador’s neighboring countries Colombia and Peru. Ae. 

aegypti provided clues about the plausible transmission risk of yellow fever in urban 

areas and chikungunya and dengue viruses. Additionally, our models may provide 

information on the critical areas that deserves surveillance in view of the potential 

spread of zika virus in Ecuador.  

 

Based on vectors suitability, potential areas for malaria occurrence were found in 

southwestern Ecuador in Los Rios and Guayas, contrasting with the extensive 

continuous suitable area east to the Andes Mountains involving the major percentage of 

the three Amazonian provinces Sucumbios, Orellana and Pastaza -from north to south- 

and areas of Napo and Morona Santiago. The southern and last of the Amazonian 

provinces of Ecuador, Zamora Chinchipe, has some patches of suitable areas related 
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with lowlands (Fig. 2 in the manuscript and Fig. S5). Reduced risk of exposure to 

vectors of malaria in the lowlands in eastern regions of the country, An. neivai and An. 

pseudopunctipennis, may be a consequence of novel environments where no 

predictions were allowed and thus the risk of exposure in such areas was not accounted 

for these species. Novel environments were particularly evident for An. 

pseudopunctipennis, thus, high uncertainty exist in prediction outside the Andes region; 

novel environments for this species may reflect temperatures warmer than those in 

areas where this vector occurs. In Latin America, a displacement from low to highlands 

was predicted recently for malaria vectors in Colombia75. Our results suggest that 

warming temperatures would displace vector species to the Andes. A previous study 

using ecological niche modeling also suggested that under climate change, malaria 

vectors may shift their distributional areas abandoning areas with high human density to 

invade areas with low human density reducing the overall number of people exposed 

and in consequence the burden of the disease in Africa76. These model results should 

be considered with caution given that niche models are commonly based on coarse 

scale patterns, neglecting fine scale population ecology and human interventions to 

reduce disease prevalence48.  

 

Models of chagas disease vectors showed a particular and complex pattern of suitability 

across central-south areas of the country with special emphasis on the coast and Andes 

(Fig. 2 in the manuscript). All provinces of the coast region were compromised with the 

exception of the northern province of Esmeraldas, affected to a lesser extent. All the 

provinces of the Andean region were also compromised and presented suitable 
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available areas for the vectors, especially in the Andean plateau. On the other hand, 

eastern Ecuador, at Orellana and Pastaza provinces, presented no suitability for chagas 

vectors with suitable areas found in other Amazonian provinces (i.e., Napo, Sucumbios, 

Morona Santiago, and Zamora Chinchipe). Configurations on the potential distribution of 

chagas disease vectors varied dramatically according to the species involved ranging 

from highlands in Central Ecuador (T. carrioni) to additional adaptations to coastal 

environments (T. dimidata; Fig. S1).  

 

Leishmaniasis vectors were predicted across Ecuador, with special foci of risk in the 

western slope of the Andes Mountains. The eastern slope of these Mountains also 

revealed vector suitability, with increased risk in vectors distribution in the Amazonian 

provinces of Sucumbios, Napo, Orellana, Pastaza, Morona Santiago, and Zamora 

Chinchipe. Risk of exposure to vectors of leishmaniasis was high in lowlands (Fig. 2 in 

the manuscript), this pattern was influenced by Lu. trapidoi, whereas Lu. hartmanni was 

the leishmaniasis potential vector with the broadest distribution of all species included in 

the study, finding suitable environments across the country (Fig. S1).  

 

The general pattern of vector potential distribution in Ecuador under present-day 

conditions, highlights the southwestern area of Los Rios and Guayas as a main foci of 

risk (Fig. S3). Under present-day environmental conditions, the consensus map of 

vectors potential distribution showed low vectors richness in the Andes Mountains with 

high risk mainly present in the valleys between them, in the provinces of Carchi, 

Imbabura, Pichincha, Cotopaxi, Chimborazo, Tungurahua, Bolivar, and Azuay, from 
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north to south. Loja province belongs to the Andean region but does not have important 

elevations (Fig. S5); this area has the highest risk of potential vector distribution in the 

south (Fig. S3). Vectors distributions were anticipated in areas beyond the records 

available to us in Ecuador. This pattern would be a result of successful eradication 

program in some areas where vectors were extirpated, areas with unavailable prey of 

microhabitats, or could reflect situations in which vectors have suitable conditions in 

these areas but are unable for successful dispersal and colonization.  

 

Future climate models 

Under near future climate (i.e., 2030), patterns of vector occurrence revealed a slight 

displacement of high risk from southern areas of the country to northwestern Ecuador. 

In this period, areas of risk increase also in northern Andes (Fig. S3). By 2050, models 

forecast high risk across the Pacific coast from central to northern areas of Ecuador. 

Models for 2100 anticipated an abrupt range shift in patterns of risk of exposure to 

disease vectors, with suitable areas focused in central Ecuador, in the highlands, for 

most of the vector species (Fig. S3). This future climate scenario showed areas of high 

risk in northern Ecuador specifically in the provinces Carchi, Imbabura, Santo Domingo 

de los Tsachilas and small areas of Sucumbios and Pichincha, hosting Ecuador’s 

capital and in turn high human densities. In the middle of the Andean region, Bolivar, 

Chimborazo, and Morona Santiago represented high risk of potential vector’s 

distribution due to warming climates. In southern Ecuador, high risk areas were 

predicted under future climate conditions in the provinces of Azuay, Loja, and Zamora 

Chinchipe. Under the 2100 scenario, some models failed to find suitable conditions in 
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Ecuador for some vectors (Fig. S2), for example, T. dispar may be extirpated due to 

unsuitable conditions in the future considering the absence of tolerable climate for the 

species (Fig. S1). However, the comparison between present-day and future climate in 

Ecuador via Mobility-Oriented Parity test revealed areas with future climate not available 

in the present-day distribution of this species (Fig. S2). The presence of non-analogous 

environments, where no prediction was allowed, was particularly evident for species 

with narrow distributions with maximum temperatures above those available currently in 

the species range (Fig. S1 and S2). 

 

Our future climate models offer coarse spatial resolution variables (i.e., ~20km) 

compared with the fine resolution from remote sensing data we employed (i.e., ~1km; 

Fig. S3). Future climate scenarios have implicit the uncertainty52, and basing niche 

models on climate solely does not include the complex biotic interactions among 

communities that may result in unexpected ecological surprises not captured or 

forecasted by our models77. We are sympathetic with these limitations of climate based 

models, but also recognize that future climate scenarios provide opportunities to 

anticipate and adapt to the effect of climate change on human health78. Additionally, we 

employed data of human populations across Ecuador under current climate conditions 

and explored the risk of this population under future climate. We avoided the use of 

future human population scenarios considering that the main gain of future population 

models would be a temporal match between future climate and future population, but at 

the cost of amplifying uncertainty. In other words, future climate models have 

considerable uncertainty, thus, using future population models will result in risk 
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estimations including the uncertainties of both future climate models and future 

population models, thereby amplifying the uncertainties in the system. We found that 

patterns of current and future population in Ecuador will remain stable. However, future 

research exploring the accuracy of essambling future climate with future population 

models is warranted.  

 

Occurrence data may also contribute to uncertainty from sampling bias79. Bias could be 

generated from oversampling in areas of easy access or from countries with active 

epidemiological surveillance systems, thus, biased data will result in biased models79. 

To mitigate the effect of bias in model calibration, we utilized binary models instead of 

continuous models resembling sampling bias effort43. Additionally, we employed all the 

occurrences available to us for each vector species, this allowed us to capture a 

representative sample of the environmental signature required by each vector species 

across its known geographic distribution. Models for some species were calibrated from 

a low number of occurrences, likely reflecting the low reporting effort and data 

digitalization of Ecuador or the low abundances of such species. Previous niche models 

of vector species have considered vector reports in the study area only, neglecting 

vector data from areas outside the areas of interest (e.g., 80–82). This model design 

results in models explaining just a limited portion of the species ecological niche, thus, 

generating pseudomodels that not capture the environmental range tolerated by the 

vectors43. Excluding the entire dataset of existing reports of a vector’s distribution, when 

modeling the ecological niche, i) limits the biogeographic understanding of the 

species83,84, ii) has statistical weaknesses85, and iii) lack of biological interpretation43,48. 
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Our study design considering the entire geographic range of vectors increased the 

information provided to the model to characterize the environmental space occupied by 

the species and in consequence its environmental tolerances43, mitigating the plausible 

environmental bias of the data79,86. 

 

Our selection of vector species was derived by the known importance of species or their 

potential role in the disease transmission. However, we may be neglecting other vector 

species with a role in transmission. For example, from the 81 species of phlebotomine 

sandflies reported from Ecuador, just a few have been studied in depth. The sandfly 

species Lutzomyia trapidoi and Lu. gomezi have been incriminated as vectors at the 

Pacific coast of Ecuador16,17,87 whereas Lu. ayacuchensis have been reported to be a 

vector at a localized focus at the highlands in Paute canton, a village located at 

southern section of the Andes Mountains in Ecuador88. Similarly, to our knowledge Lu. 

hartmanni has not been reported as a proven vector of leishmaniasis; althought its role 

in disease transmission is debatable, the species is widely distributed in areas where 

the disease is endemic and has been found infected with Endotrypanum parasites9. 

Other sandfly species including Lu. tortura and Lu. serrana have also been found 

infected with parasites, but their role as vectors of the disease is not well understood. 

 

We found that tuning Maxent parameters, specifically the regularization coefficient, 

provides better performance than using default parameters. This step appears to be 

important when calibrating models for species of public health concern considering that 

model fit appears to be sensitive to the regularization coefficient selected69. Additionally, 
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future climate models provide insights of the plausible climate conditions under different 

emission scenarios50,52, however, such models may include climate conditions not 

present nowadays61,62. Hence, predicting vectors’ suitability in novel climate conditions 

produces models with elevated uncertainty61,62. Here, we mitigated model predictions 

under novel environments via strict model transference and MOP analysis to identify 

areas with novel climates, where predictions should not be developed and conclusion 

should be considered with caution. Thus, we modified default parameters in Maxent via 

turning off extrapolation and clamping in the models, avoiding predictions in non-

analogous novel climate conditions of future climate scenarios (Figs. S2), and restricting 

prediction to analogous climates only. This resulted in models with reduced uncertainty 

in future climate forecast and perilous prediction in novel climates lacking biological 

realism24.  

 

Finally, anticipating potential areas and populations at risk of exposure to disease 

vectors is a priority for effective disease control interventions89. While a previous study 

aimed to describe the occurrence of Rhodnius ecuadoriensis in two Ecuadorian 

provinces90, to our knowledge, this is the first effort to model a complex ensemble of 

vector species under present-day and future climate conditions in Ecuador using remote 

sensing and future climate models (Fig. S3). 
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