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Ticks of the Amblyomma cajennense species complex are important vectors of spotted fever in Latin America.
Environmental conditions determine the geographic distribution of ticks, such that climate change could in-
fluence the distribution of tick-borne diseases. This study aimed to analyze the potential geographic distribution
of A. cajennense complex ticks in a Brazil region under present-day and future climate models, assuming dispersal
limitations and non-evolutionary adaptation of these tick populations to climate warming. Records of A. ca-
jennense sensu stricto (s.s.) and Amblyomma sculptum were analyzed. Niche models were calibrated using Maxent
considering climate variables for 1950-2000 and projecting models to conditions anticipated for 2050 and 2070
under two models of future climate (CCSM4 and HadGEM2-AO). Broad suitable areas for A. cajennense s.s. and A.
sculptum were found in present-day climate models, but suitability was reduced when models were projected to
future conditions. Our exploration of future climates showed that broad areas had novel climates not existing
currently in the study region, including novel extremely high temperatures. Indeed, predicted suitability in these
novel conditions would lead to biologically unrealistic results and therefore incorrect forecasts of future tick-
distribution. Previous studies anticipating expansions of vectors populations due to climate change should be
considered with caution as they assume that model extrapolation anticipates that species would evolve rapidly
for adaptation to novel climatic conditions.

1. Introduction

studies and shows the diversity of A. cajennense lineages in the Neo-
tropic (Labruna et al., 2011; Mastropaolo et al., 2011; Beati et al.,

Ticks of the genus Amblyomma are important parasites of domestic
animals and humans in the Neotropical region (Guglielmone et al.,
2006). They are also the principal vectors of the zoonotic bacterium
Rickettsia rickettsii, the etiological agent of spotted fever in parts of
South and Central America (Labruna 2009). The taxonomic status of A.
cajennense was recently reassessed by Nava et al. (2014). They proposed
recognition of six species in the complex in populations distributed
across the Americas. This proposition has seen support from other

2013).

Empirical studies have shown that environmental conditions de-
termine geographic distributions of tick species such that they also
shape areas of risk for emergence of tick-borne pathogens (Mather and
Howard 1994; Glass et al., 1995; Guerra et al., 2002; Estrada-Pena
et al., 2012). Climate is recognized as a major determinant of infectious
disease distributions (Peterson 2006) and climatic data have been used
to predict geographic distributions of tick species (e.g., Estrada-Pena
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2008).

Predictive models have been developed using future climate sce-
narios to assess and understand potential distributional changes of ticks
(e.g., Lindgren and Gustafson 2001; Estrada-Pefia 2008; Porretta et al.,
2013; Estrada-Pena et al., 2015). However, previous studies did not
incorporate the implicit uncertainty in the forecasts (Beale and Lennon
2012). In addition, models aiming to predict species distributions in
future climates should consider niche conservatism, which has been
demonstrated on the local, regional, and global scales, showing evi-
dences that many species have a very limited capacity of adaptation to
novel environmental conditions (see Crisp et al., 2009; Soberén and
Peterson, 2011).

Previous evaluations have shown that failing to consider niche
conservatism may result in predicting survival of tropical vectors even
at freezing and boiling temperatures (Owens et al., 2013), generating
ecological niche models with lack of biological realism. That is to say,
adaptation to novel climates is a slow process (e.g., hundreds of cen-
turies; Peterson 2011), thus, models ignoring niche conservatism as-
sumes that species will evolve fast (~50 years) to be adapted to the
current trends of climate warming. An alternative to these artifacts is to
assume niche conservatism to avoid model extrapolation under novel
climatic conditions (see Anderson 2013; Owens et al., 2013). However,
the current practices for modeling vector distributions under future
climate conditions fail to consider impacts of model extrapolation in
novel climates (e.g., Fischer et al., 2013). Previous models also assumed
high dispersal potential of ticks and dramatic range shifts in short terms
(i.e., decades). Good practices of vectors modeling under future cli-
mates should include estimations of the dispersal potential of species,
explorations of several emission scenarios and climate models, ecolo-
gical niche model transference (i.e., restriction of predictions to en-
vironments analogous between calibration and projection areas), un-
certainty estimation, and identification of non-analog environmental
conditions for more robust conclusions (Soberén and Peterson 2011).
As such, the aim of this study is to analyze the potential geographic
distribution of two species of ticks of the A. cajennense complex (i.e., A.
cajennense (sensu stricto) (s.s.) and A. sculptum), to explore how future
climate scenarios by 2050 and 2070 can shape the distribution of these
species in Brazil. We assumed non-adaptation of these ticks to climate
warming (i.e., niche conservatism) and limited dispersal abilities (see
below).

2. Methods

We modeled the distribution of ticks under present-day climate
conditions based on a proxy of the potential dispersal of their popula-
tions in Brazil, assuming limited dispersal of these populations. Models
were then projected to future climate models under different emission
scenarios as summarized in a workflow diagram (Fig. 1).

2.1. Dispersal potential

The modeling followed the BAM framework (Peterson et al., 2011),
which is a generalization of the factors shaping the geographic dis-
tributions of organisms in terms of biotic relationships (B), abiotic
constrains (A), and the dispersal potential or movement of species (M).
Thus, A n B n M is the geographic area where the organism of interest
occurs (Soberén and Peterson 2005). Models were calibrated based on
our hypotheses of dispersal potential, M, for the target population of
each tick species (Barve et al., 2011). Briefly, to approximate the dis-
persal potential of tick populations, we used the average geographic
distance between a centroid point among populations and all the most
distant reports in the study area as described by Poo-Mufoz et al.
(2014). Occurrences were restricted to populations of A. cajennense
(sensu stricto) (s.s.) and A. sculptum species in Brazil to resemble the
climatic signature of the populations in this region. We estimated a
distance of 7.14 geographic degrees for A. cajennense s.s. and 7.74 for A.
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sculptum. These distances were then used to create buffers around oc-
currences for each population as an approximation of M, these areas
were then used as model calibration regions (Fig. 2).

2.2. Input data

Occurrence data were obtained from the scientific literature (Nava
et al., 2014; Martins et al., 2016) including taxonomic assessments of
the A. cajennense complex in Brazil, focused on two species, A. ca-
jennense s.s. and A. sculptum. Occurrence reports were converted to
geographic coordinates (WGS 84) in decimal degrees format. In all,
after removing duplicates and allowing only one occurrence per grid
cell of the environmental layers, 60 confirmed single records of A. ca-
jennense s.s. and 122 of A. sculptum were used to calibrate the models
(Fig. 2).

To characterize environmental conditions across the study region,
we explored seven climatic variables that we considered relevant to the
species biology in terms of their physiological tolerance: annual mean
temperature, mean diurnal temperature range, maximum temperature
in the warmest month, minimum temperature in the coldest month,
annual precipitation, and precipitation in the wettest and driest
months. These variables had been also used in previous studies of the
biology of vectors and reservoirs of tropical diseases in Brazil (Gurgel-
Gongalves et al., 2012; Oliveira et al., 2013). We obtained these data
layers from WorldClim at approximately 5 x 5km spatial resolution
(Hijmans et al., 2005), which depicts present-day climate conditions as
the interpolation of mean monthly climatic data from meteorological
stations over 30-50 (1950-2000) years. Models were calibrated using
these variables with original values, however, for visualization of the
environmental distribution of the species in present-day climatic con-
ditions, we performed a principal component analysis (PCA) to reduce
dimensionality and collinearity of the environmental variables. We
estimated convex polyhedrons around available occurrences for each
tick species in an environmental space defined by the first three prin-
cipal components generated from the PCA as these contained 92.43% of
the information for A. cajennense s.s., and 88.73% of the information for
A. sculptum from the seven original bioclimatic variables (Supplemen-
tary Material S1); both procedures were performed using NicheA soft-
ware version 3.0 (Qiao et al., 2016a).

Greenhouse gas emissions scenarios proposed by the Special Report
of Emission Scenarios of the Intergovernmental Panel on Climate
Change (IPCC) were included as representatives of possible future cli-
mate conditions (IPCC, 2007; Moss et al., 2008). Specifically, we used
the 8.5 representative concentration pathway (RCP 8.5) which in-
corporates demographic, socioeconomic, and land use patterns to esti-
mate future gas emissions (Moss et al., 2010). RCP 8.5 is a high ra-
diative forcing pathway reaching more than 8.5 W/m? by 2100 with
higher temperature increases (Riahi et al., 2011). We explored the RCP
8.5 given that previous conservative scenarios of climate (e.g., RCP 2.5)
have been proposed as implausible considering recent emissions re-
cords (Rahmstorf et al., 2007; Raupach et al., 2007; Manning et al.,
2010). Indeed, after a detailed assessment of models considering socio-
economic trends, the RCP 8.5 scenario seems to be the most realistic
(Munoz, 2010; Caceres and Nunez, 2011; Noboa et al., 2012). The RCP
8.5 was based on the socio-economic and demographic background,
assumptions, and technological approach of the A2 model and is con-
sidered and updated and revised quantification of the original IPCC A2
SRES (Riahi et al., 2011), thus, resembling the limited adoptions of
green technologies (Snover et al., 2013; Melillo et al., 2014). Models
were projected to the RCP 8.5 scenario for 2050 (average for
2041-2060) and 2070 (average for 2061-2080). Because climate
models present inherent differences based on the algorithms and as-
sumptions employed (Harris et al., 2014), we explored two different
climate models that allowed us to capture variability in forecasts, C-
CSM4 and HadGEM2-AO, available at the WorldClim repository
(Hijmans et al., 2005).
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Ecological niche modeling Framework

Fig. 1. Ecological niche modeling framework. The workflow summar-
ized in this diagram includes management of occurrences for model cali-

bration and study area delimitation, use of the study area to delineate
present-day and future climate layers, and model calibration to develop
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Fig. 2. Study area and occurrences of Amblyomma cajennense s.s. and Amblyomma sculptum used for ecological niche modeling. The occurrences for A. cajennense s.s. (red) and for
A. sculptum (green) available for Brazil (gray) were used to estimate accessible areas (M) for each species (solid line), which were used as areas for model calibration. Within-country
outlines denote biome borders (See Supplementary Material S3). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)

Future climate models in some areas can contain novel climatic
values that may be not available under present-day conditions. Models
projected into these novel climates would result in predictions based on
strict extrapolation: forecasts in temperature or precipitation values
above or below the range of values in the model calibration area
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available for the species. Because novel climates would be potentially
available in the future, we identified analogous environments in the
study area by comparing present-day and future climate dataset using
the extrapolation detection software Exdet of Mesgaran et al. (2014).
Exdet uses Mahalanobis distance to assess similarity of conditions in
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two different environmental data sets. Using Exdet, we estimated Type I
novelty (i.e., environmental values of future climates, falling outside
the range of values of present-day climate) for each environmental
layer (see Mesgaran et al., 2014). Present-day ecological niche models
were projected to future climates under strict ‘model transference’ i.e.,
predictions without extrapolation in novel climates. In other words,
future climate models predict only in analogous environments that are
also available in the calibration data, truncating predictions in novel
environments, while extrapolation and clamping (a type of sustained
extrapolation) allow prediction in novel climates (Anderson 2013).

2.3. Ecological niche modeling

Ecological niche models were calibrated using Maxent version
3.3.3k (Phillips et al., 2006). To assure good fit of models to our sam-
ples, models were calibrated with different regularization coefficients
from 0.1 to 2 (i. e., 20 coefficients; Merow et al., 2013). Those with
adequate levels of complexity and fit with the data were selected using
the Akaike Information Criterion corrected for sample size (AICc;
Warren and Seifert, 2011) using ENMTools 1.4.4 (Warren et al., 2010).
We also assessed if the best regularization parameters were able to
predict independent data better than random predictions for each
species. For this, coordinates were divided in four quadrants based on
their latitudinal and longitudinal location using one off diagonal set of
occurrences for calibration and other for evaluation (Supplementary
Material S1), following the methods described by Peterson (2012). The
ability of the selected parameters to predict independent data was es-
timated using the Partial ROC metric described and tested elsewhere
(Peterson et al., 2008); Partial ROC assesses a ratio from the number of
evaluation occurrences predicted correctly and the proportion of area
predicted suitable—a ratio with values < 1 reflects predictions indis-
tinguishable from random predictions, while a ratio > 1 suggests
predictions better than by random (Peterson et al., 2008; Peterson,
2012).

The best regularization coefficient for each species was then used to
develop final present-day models. For the final models, we selected
logistic values as final output and bootstrap replicates (Elith et al.,
2011). Bootstrap replicates have been used recently to map Ebola in
Africa; their application allows to develop a series of models under
different scenarios of data availability to develop dimensions of un-
certainty (Peterson and Samy 2016). Using random seed, we con-
structed 25 model replicates calibrated with 80% of the data available.
Uncertainty maps were generated based on the standard deviation of
the bootstrap replicates. The average of replicates was selected as final
model and converted to binary to generate binary maps of environ-
mental suitability and unsuitability. The threshold to construct the
binary maps was the minimum logistic value of suitability from 95% of
all the occurrences used for model calibration under present-day cli-
matic conditions. This threshold takes into consideration an estimate of
the likely amount of error among occurrence data and thus removes 5%
of occurrences with the lowest suitability values (E = 5%) (Peterson
et al., 2008).

Final models were then projected to future climatic conditions via
deactivating clamping and extrapolation in Maxent, for a strict model
transference avoiding predictions in environments not available in the
calibration region (Anderson 2013; Owens et al., 2013; Merow et al.,
2013; Escobar et al., 2015). To further visualize the effects of un-
controlled model projections to future climate, we also developed
Maxent predictions allowing predictions in novel climates (i.e.,
clamping and extrapolation activated) for all future models.

3. Results
We forecasted present-day and future potential distributions and

their associated uncertainty in estimations for A. cajennense s.s. and A.
sculptum (Fig. 3). Based on our evaluation of model parameterizations,
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the best regularization coefficients for A. cajennense s.s. and A. sculptum
were 1.9 and 2.0, respectively (Supplementary Material S2). Model
evaluations using Partial ROC resulted in ratios above 1, thus indicated
that predictions using these parameters were better than random ex-
pectations (Supplementary Material S1). In geographic space, A. ca-
jennense s.s. showed a broad potential distribution in the Amazon and
Amazon-Cerrado transition zones. Amblyomma sculptum was estimated
as ranging somewhat farther south, in the Pantanal, Cerrado, and
Atlantic Forest biomes (Fig. 3; Supplementary Material S3).

When comparing present-day and future potential distributions, we
found that suitable areas for the populations of A. cajennense s.s. and A.
sculptum (red in Fig. 3) will be reduced based on model projection with
strict transference (‘Strict transference,’ pink in Figs. 4 and 5). However,
if models are allowed to predict in novel climates via clamping and
extrapolation activated, models predict that species will increase their
ranges to broad areas with novel environments expected for the region
(‘Clamping and Extrapolation,” pink in Figs. 4 and 5). Environments in
both CCSM4 and HadGEM2-AO models did not match present-day cli-
matic conditions in the calibration region, and HadGEM2-AO model
had more pixels with Type I novelty (‘Novel environments,” red in
Figs. 4 and 5). The novel climate assessment, confirmed that using
Maxent transference, predictions were correctly truncated in novel
environmental conditions, generating outputs only in analogous cli-
mates and suggesting an agreement in the identification of novel cli-
mates by Maxent and Exdet (‘Strict transferences’ pink vs. ‘Novel en-
vironments,” gray in Figs. 4 and 5). Within regions climatically
analogous, the future prediction for A. cajennense s.s. was restricted to
small areas for CCSM4 in the Cerrado and Amazonia and was particu-
larly restricted in 2070 in the HadGEM2-AO model (Fig. 4). Future
suitability predicted for A. sculptum comprised a broader area than for
A. cajennense s.s., but only the latter species was predicted to occur in
the northern parts of the study region.

Uncontrolled exploratory models using clamping and extrapolation
activated predicted broad areas of suitability in the zone of potential
dispersal for both species in all future models (‘Clamping’ and
‘Extrapolation,” pink Figs. 4 and 5). However, Exdet maps showed pixels
corresponding to novel environments in the areas predicted suitable by
Maxent extrapolative, thus warning about unrealistic interpretation in
these regions (‘Novel environments,” red in Figs. 4 and 5).

4. Discussion

During the projection of models to future climate, restricted only to
areas where analogous environments are anticipated, we estimated a
reduction of areas suitable for the target populations of A. cajennense s.s.
and A. sculptum in Brazil. This contrasts with other studies proposing an
expansion of suitable areas for ticks such as Rhipicephalus bursa, R.
turanicus, and Hyalomma marginatum under future climate conditions in
Mediterranean regions (Estrada-Penia and Venzal, 2007) and Ixodes ri-
cinus in Eurasian regions (Porretta et al., 2013). Thus, this study can be
incorporated to the growing body of literature suggesting that, as has
been reported for other taxa, climate change can negatively impact
parasites and, in turn, generate dramatic cascade effects on food webs
(Cizauskas et al., 2017).

Informing health agencies and decision makers with artifactual
forecasts suggesting dramatic increases of vectors distribution could
result in the inappropriate priorization of risk areas. Recent efforts for
more objective explorations of the effect of climate change on the
burden of vector-borne diseases suggest that under controlled meth-
odologies climate change would result in reductions in the burden of
specific vector species (Escobar et al., 2016). Peterson (2009) also re-
ported that the burden of malaria in Africa could reduce in number of
cases if vectors shift their distribution in response to warming climates.
Complementary, Ryan et al. (2015) forecasted a net decrease of areas
suitable for malaria vectors in Africa. Similarly, Liu-Helmersson et al.
(2014) proposed that vectors’ capacity to transmit dengue virus would
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Fig. 3. Ecological niche models for Amblyomma cajennense s.s. and Amblyomma sculptum under present-day climatic conditions. Left: areas predicted suitable (red) and un-
suitable (gray) for each species were identified across the calibration area M (buffer). Right: areas with high (red) and low (blue) uncertainty were also identified to provide more
information during model interpretation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

be reduced with the expected raise of temperatures in future years.
These patterns have been supported by recent findings in in vivo ex-
periments showing a decline of fitness in insects due to increased
temperatures. For example, Kellermann et al. (2012) found that Dro-
sophila flies are unable to adapt to warming temperatures in laboratory
conditions. Also, Murdock et al. (2016) reported that increments of
temperature in laboratory experiments reduce the competence of ma-
laria vectors.

While we anticipate a reduction on the spatial range of the tick
species explored, we also recognize that this reduction should not be
strictly interpreted as a reduction of spotted fever transmission risk.
Thus, even if geographic ranges of vectors contract, spotted fever
burden can still increase as a result of climate change. For example,
climate change can affect the community composition in some areas
generating unexpected disruptions in parasite traits (e.g., host
switching, infection of immunologically naive populations, increased
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parasite fecundity; Cizauskas et al., 2017). In consequence, we argue
that the effects of climate change on the burden of spotted fever cannot
be inferred from range contractions only and more fine-scale informa-
tion is necessary to infer risk reduction (or increase) due to warming
temperatures.

Our models were focused on Brazilian tick populations, excluding
the entire species range. Recent experiments showed that dispersal
potential could limit the ability of populations to reach suitable en-
vironments due to climate change, driving extinction of local popula-
tions (Qiao et al., 2016b). Thus, our models reflect the existential niche
of these ticks in Brazil, i.e., a portion of the niche occupied by the
populations explored (Peterson 2011). Different patterns could emerge
if dispersal limitations are ignored and the entire range of the species is
used during model calibration under the assumption, however, of un-
limited displacement of individuals.

More efforts are needed to understand the potential effects of
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Fig. 4. Ecological niche models for Amblyomma cajennense s.s. in 2050 and 2070 according to future climate models CCSM4 and HadGEM2-AO. Strict transference: Suitable
(pink) and unsuitable areas (light blue) predicted for 2050 (left) and 2070 (right) in analogous environmental conditions between present-day climate and future climate models CCSM4
(top) and HadGEM2-AO (bottom). Predictions were truncated in non-analogous environments to avoid extrapolation. Novel environments: Areas with future climates conditions not
presently available in the study area are in red (Type I novelty). Areas with analogous environments are in gray. Clampling: Models with clamping activated in Maxent were allowed to
predict suitability (pink) in novel conditions. Extrapolation: Models with clamping and extrapolation activated in Maxent were allowed to predict suitability (pink) in novel conditions.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

climate change on the epidemiology of tick-borne diseases including
phylogeographic assessments to elucidate if, across the entire range of
the A. cajennense complex, lineages differ in their physiological toler-
ances to climate. This information would help to better define dispersal
regions, M. Future lines of research could also include assessing the
effects of climate change on parasite survival on different life stages

(e.g., larva vs. nymph vs. adults), which may differ. Estimating toler-
ance limits to temperature for both, parasites and hosts, would help to
determine temperatures in which hosts will be free of parasites (host’s
thermal refugia sensu Cizauskas et al., 2017). Here we assumed that
ticks would be able to find suitable conditions in tandem with host,
which may be an overestimation of the potential distribution of ticks.
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Thus, future models should explore the co-occurrence of host species in
areas predicted suitable for ticks (Cizauskas et al., 2017).

Ecological niche models for A. cajennense s.s. and A. sculptum, under
present-day conditions, had impressive spatial heterogeneity in the
uncertainties, both in suitable and unsuitable areas. We included maps
of uncertainty in predictions to highlight the areas that should be
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considered with special caution. The quality of occurrences may be an
important source of uncertainty in the ecological niche models (Beale
and Lennon, 2012). Errors of georeferencing and the inclusion of false
positive occurrences would add error to the calibration process, in-
crementing uncertainty. In this sense, our study used information on the
distribution of the species from populations in Brazil with extreme
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precaution to assure precision in the geolocation and identification of
the individuals (Martins et al., 2016). Variable selection can also con-
tribute to generate uncertainty. For example, using many highly-cor-
related variables will result in models with high overfit (Peterson
2014). To avoid this, we used a reduced number of uncorrelated en-
vironmental variables. Finally, different algorithms can generate dif-
ferent results (Qiao et al., 2015), we mitigated this by exploring 20
different parameter values selecting the model configuration with the
best fit to the data. Providing uncertainty estimates of forecasts pro-
vides information to identify areas with high accuracy for model in-
terpretation (Reeves et al., 2015). Here, uncertainties were apparently
associated with regions with low number of records.

Our maps of suitability and uncertainty could be used in tandem to
identify areas where spotted fever is not reported yet, but in which
models predict, with high accuracy, suitable conditions for the vectors.
On the other hand, sites predicted suitable but with high uncertainty
should be considered with caution when assigning public health re-
sources. The need of reporting model uncertainty in a spatial context is
a recent practice in ecological niche modeling of infectious diseases
(e.g., Peterson and Samy 2016) and should be adopted as a common
practice when mapping disease transmission risk. Public health au-
thorities, as well as journal reviewers, could help in the task of making
uncertainty maps an essential condition of present-day and future maps
of vectors’ potential distribution.

An additional source of uncertainty is the prediction in novel en-
vironments based on the extrapolative behavior of models in conditions
beyond the range of values available in the calibration data; maps
identifying novel climates should support the forecasts of vectors dis-
tributions in novel areas and future climates to determine regions of
extrapolation and perilous predictions (Mesgaran et al., 2014). Thus,
we also propose that reporting areas with novel environments should be
indispensable in studies aiming to predict distribution of species under
future climate models, otherwise, interpretation lacks critical in-
formation.

In conclusion, suitable areas for A. cajennense s.s. and A. sculptum
populations in Brazil may be expected to decrease under current trends
of climate change. Decreases were associated to novel climates across
the species distributions and our assumption of niche conservatism (i.e.,
no adaptation of species to novel climates). Previous studies antici-
pating expansions of vector populations due to climate change should
be considered with caution as they may assume that model extrapola-
tion correctly anticipates species response to novel climates and that
species would evolve rapidly for adaptation to warming conditions.
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